Abstract:
Knowledge is the fundamental resource that allows us to function intelligently.
Similarly, organizations typically use different types of knowledge to enhance their performance.
Commonsense knowledge that is not well formalized modeling is the key to disaster
management in the process of information gathering into a formalized way. Modeling commonsense
knowledge is crucial for classifying and presenting of unstructured knowledge.
This paper suggests an approach to achieving this objective, by proposing a three-phase
knowledge modeling approach. At the initial stage commonsense knowledge is converted
into a questionnaire. Removing dependencies among the questions are modeled using principal
component analysis. Classification of the knowledge is processed through fuzzy logic
module, which is constructed on the basis of principal components. Further explanations for
classified knowledge are derived by expert system technology. We have implemented the
system using FLEX expert system shell, SPSS, XML, and VB. This paper describes one
such approach using classification of human constituents in Ayurvedic medicine. Evaluation
of the system has shown 77% accuracy.
Citation:
Mendis, D. S. K., Karunananda, A. S., Samaratunga, U., & Ratnayake, U. (2007). An approach to the development of commonsense knowledge modeling systems for disaster management. Artificial Intelligence Review, 28(2), 179–196. https://doi.org/10.1007/s10462-009-9097-6