Covid-19 infection risk assessment for shoppers in retail stores

Thumbnail Image

Date

2022-12

Journal Title

Journal ISSN

Volume Title

Publisher

Information Technology Research Unit, Faculty of Information Technology, University of Moratuwa.

Abstract

Over the last few years, a large number of smartphone apps have been developed to "flatten the curve" of the rising number of COVID-19 infections. Knowledge of potential symptoms and their distribution enables the early identification of infected individuals. We developed a mobile app-based crowdsourcing methodology to assess the COVID-19infection risk through shopping habits at indoor retail stores. The app's goal is to instil trust in customers to visit stores, which will assist small and medium businesses to survive their operations in the near term. According to the literature, there are several implementations for COVID-19 infection risk estimations for such scenarios. A mobile app prototype was developed, and the risk was calculated using the COVID-19 Aerosol Transmission Estimator model established by the University of Colorado Boulder. The developed prototype mobile app was tested with end users to gather their feedback through a questionnaire. In comparison to the complex implementation associated with AI-based alternatives, this solution could be delivered at a lower cost with adequate accuracy of COVID-19 infection risk assessments.

Description

Keywords

Emerging technologies, COVID-19, Infection risk assessment, Mobile app

Citation

*****

DOI

Collections