Passively-powered knee exoskeleton to reduce human effort during manual lifting

Loading...
Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Faculty of Graduate Studies

Abstract

The proposed device consists of a system of helical elastic springs bilaterally located on the shank for capturing/storing waste biomechanical energy at the knee, a cable and pulley system to transmit power from and to the knee, a pulley locking/unlocking mechanism to achieve passive control of the device operation ensures no restrictions are posed by the springs during walking and applies a pre-tension on springs to prevent slacking of the Bowden cable using a return spring. However, when the wearer performs a squatting task, the springs engage/disengage energy springs when the knee flexes over a preset angle (i.e., 60 degrees). The energy dissipated and generated at the knee joint during decent and ascent phases from biomechanical studies were recorded as 45 J and 50 J respectively for an average human [3]. Accordingly, the selected energy springs can collectively capture and return approximately 20% of biomechanical energy at the knee.

Description

Keywords

Citation