Autonomous collision-free navigation of UAV in unknown tunnel-like environments

dc.contributor.authorWijebandara, A
dc.contributor.authorGamage, C
dc.contributor.editorGunawardena, S
dc.date.accessioned2025-11-21T04:24:48Z
dc.date.issued2025
dc.description.abstractUnmanned Aerial Vehicles (UAVs) have emerged as essential tools for performing inspections and explorations in challenging underground environments, including mines, drainage systems, and subterranean infrastructures. These complex tunnel-like settings introduce significant operational challenges such as GNSS-denied localization, limited visibility, sparse visual features, electromagnetic interference (EMI), and dynamic obstacles. Consequently, there is a critical need for sophisticated autonomous navigation solutions combining advanced Simultaneous Localization and Mapping (SLAM), multi-modal sensor fusion, and AI-based path planning strategies to ensure safe and efficient UAV operations.
dc.identifier.conferenceApplied Data Science & Artificial Intelligence (ADScAI) Symposium 2025
dc.identifier.departmentDepartment of Computer Science & Engineering
dc.identifier.doihttps://doi.org/10.31705/ADScAI.2025.33
dc.identifier.emailwijebandarawmas.24@uom.lk
dc.identifier.emailchandag@uom.lk
dc.identifier.facultyEngineering
dc.identifier.placeMoratuwa, Sri Lanka
dc.identifier.proceedingProceedings of Applied Data Science & Artificial Intelligence Symposium 2025
dc.identifier.urihttps://dl.lib.uom.lk/handle/123/24423
dc.language.isoen
dc.publisherDepartment of Computer Science and Engineering
dc.subjectUAV Navigation
dc.subjectVisual SLAM
dc.subjectLiDAR SLAM
dc.subjectTunnels
dc.subjectGPS-Denied
dc.titleAutonomous collision-free navigation of UAV in unknown tunnel-like environments
dc.typeConference-Extended-Abstract

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper 33 - ADScAI 2025.pdf
Size:
222.34 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections