Detection of novel biomarker genes of alzheimer’s disease using gene expression data

dc.contributor.authorPerera, S
dc.contributor.authorHewage, K
dc.contributor.authorGunarathne, C
dc.contributor.authorNavarathna, R
dc.contributor.authorHerath, D
dc.contributor.authorRagel, RG
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-03T05:11:17Z
dc.date.available2022-08-03T05:11:17Z
dc.date.issued2020-07
dc.description.abstractIt is well recognized, that most common form of dementia is Alzheimer’s disease and a successful cure or medication is not discovered. A plethora of research has been conducted to understand the underlying mechanism and the pathogenesis of the Alzheimer’s disease. To explore the underlying genetic structure of the disease, gene expression data is being used by many researches and computational and statistical approaches were used to identify possible genes that are risk. In this paper, we propose a machine learning framework that can be used to identify possible bio-marker genes. Our experiments discover possible set of 14 genes, which some of them are validated by biological sources. We also present a critical analysis of the propose machine learning framework using GSE5281 gene dataset.en_US
dc.identifier.citation*******en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185336en_US
dc.identifier.emailmario.perera@eng.pdn.ac.lken_US
dc.identifier.emailkaveesha.dilshani@eng.pdn.ac.lken_US
dc.identifier.emailchamarag@eng.pdn.ac.lken_US
dc.identifier.emailrajithae03@gmail.comen_US
dc.identifier.emaildamayanthiherath@eng.pdn.ac.lken_US
dc.identifier.emailroshanr@eng.pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 656-661en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18497
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185336en_US
dc.subjectmachine learningen_US
dc.subjectalzheimer’s diseaseen_US
dc.subjectfeature engineeringen_US
dc.subjectgene expressionen_US
dc.titleDetection of novel biomarker genes of alzheimer’s disease using gene expression dataen_US
dc.typeConference-Full-texten_US

Files

Collections