A retinex based gan pipeline to utilize paired and unpaired datasets for enhancing low light

dc.contributor.authorWeligampola, H
dc.contributor.authorJayatilaka, G
dc.contributor.authorSritharan, S
dc.contributor.authorGodaliyadda, R
dc.contributor.authorEkanayaka, P
dc.contributor.authorRagel, R
dc.contributor.authorHerath, V
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-10T03:44:49Z
dc.date.available2022-08-10T03:44:49Z
dc.date.issued2020-07
dc.description.abstractLow light image enhancement is an important challenge for the development of robust computer vision algorithms. The machine learning approaches to this have been either unsupervised, supervised based on paired dataset or supervised based on unpaired dataset. This paper presents a novel deep learning pipeline that can learn from both paired and unpaired datasets. Convolution Neural Networks (CNNs) that are optimized to minimize standard loss, and Generative Adversarial Networks (GANs) that are optimized to minimize the adversarial loss are used to achieve different steps of the low light image enhancement process. Cycle consistency loss and a patched discriminator are utilized to further improve the performance. The paper also analyses the functionality and the performance of different components, hidden layers, and the entire pipeline.en_US
dc.identifier.citationH. Weligampola et al., "A Retinex based GAN Pipeline to Utilize Paired and Unpaired Datasets for Enhancing Low Light Images," 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 224-229, doi: 10.1109/MERCon50084.2020.9185373.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185373en_US
dc.identifier.emailharshana.w@eng.pdn.ac.lken_US
dc.identifier.emailgihanjayatilka@eng.pdn.ac.lken_US
dc.identifier.emailsuren.sri@eng.pdn.ac.lken_US
dc.identifier.emailroshangodd@eng.pdn.ac.lken_US
dc.identifier.emailmpb.ekanayake@eng.pdn.ac.lken_US
dc.identifier.emailroshanr@eng.pdn.ac.lken_US
dc.identifier.emailvijithag@eng.pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 224-229en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18589
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185373en_US
dc.subjectlow-light image enhancementen_US
dc.subjectretinex theoryen_US
dc.subjectgenerative adversarial networksen_US
dc.subjectcycle consistencyen_US
dc.titleA retinex based gan pipeline to utilize paired and unpaired datasets for enhancing low lighten_US
dc.typeConference-Full-texten_US

Files

Collections