Context aware trilingual conversational service robot for restaurant

dc.contributor.authorPirabaharan, K
dc.contributor.authorRagunathan, A
dc.contributor.authorSathiyalokeswaran, L
dc.contributor.authorJayasekara, AGBP
dc.contributor.authorVadivelthasan, J
dc.date.accessioned2025-12-17T08:56:26Z
dc.date.issued2025
dc.description.abstractConversational AI enables seamless humancomputer interactions across domains like customer service and healthcare. However, current systems face challenges with low-resource languages, real-time latency, and edge-device performance due to computational limitations. Current service robots commonly use obstacle avoidance only, missing auditory context in dynamic environments. This paper presents a domainspecific conversational AI system for restaurant service robots in Sri Lanka, supporting trilingual (English, Sinhala, Tamil) interactions with context-aware order-taking while incorporating voice direction following for enhanced navigation. Our system leverages fine-tuned Whisper Small for automatic speech recognition (ASR) and language identification. For accuracy, we employ a Retrieval-Augmented Generation (RAG) architecture, combining FAISS for efficient retrieval and a fine-tuned LLaMA 3.2 (1B parameters) for generation. Standalone fine-tuning with custom data showed limited domain-query performance, while RAG improved accuracy without compromising edge-device feasibility. Speech output uses SpeechT5-optimized text-tospeech (TTS) models for Tamil and Sinhala. Our system enables scalable multilingual restaurant automation with voice-following. Future work includes edge optimization, TTS refinement, and multimodal enhancements for a better user experience.
dc.identifier.conferenceMoratuwa Engineering Research Conference 2025
dc.identifier.departmentEngineering Research Unit, University of Moratuwa
dc.identifier.emailketharani2000@gmail.com
dc.identifier.emailathy15@yahoo.com
dc.identifier.emaillingalingeswaran99@gmail.com
dc.identifier.emailbuddhikaj@uom.lk
dc.identifier.emailjay@verveautomation.com
dc.identifier.facultyEngineering
dc.identifier.isbn979-8-3315-6724-8
dc.identifier.pgnospp. 426-431
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2025
dc.identifier.urihttps://dl.lib.uom.lk/handle/123/24612
dc.language.isoen
dc.publisherIEEE
dc.subjectTrilingual Conversational AI
dc.subjectContext Awareness
dc.subjectRetrieval Augmented Generation (RAG)
dc.subjectVoice Direction Following
dc.subjectHuman Robot Interaction (HRI)
dc.subjectAutomatic Speech Recognition (ASR)
dc.subjectText-to-Speech (TTS)
dc.subjectRestaurant Automation
dc.subjectDomain Specific AI
dc.subjectEdge Computing
dc.subjectJetson Nano.
dc.titleContext aware trilingual conversational service robot for restaurant
dc.typeConference-Full-text

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1571153981.pdf
Size:
4.63 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections