Hybrid approach for accurate and interpretable representation learning of knowledge graph

dc.contributor.authorYogendran, N
dc.contributor.authorKanagarajah, A
dc.contributor.authorChandiran, K
dc.contributor.authorThayasivam, U
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-03T05:39:46Z
dc.date.available2022-08-03T05:39:46Z
dc.date.issued2020-07
dc.description.abstractRepresentation learning of knowledge graph aims to embed both entities and relations into a low-dimensional space. However, there are still some gaps in the knowledge graph embedding methods in providing interpretation of knowledge graph while encoding the semantic meaning of the concepts and structured information of knowledge graphs. To address this issue, we propose a hybrid approach for Accurate and Interpretable Representation Learning (AIRL) method for embedding entities and relations of knowledge graphs by utilizing the rich information located in entity descriptions and hierarchical types of entities. Here we use hybrid approach to learn interpretable knowledge representations by capturing the semantics and structure of entities using this rich information. We adopt FB15K dataset generated from a large knowledge graph freebase, to evaluate the performance of the proposed model. The results of experiments demonstrate AIRL significantly outperforms translation embeddings and other state-of-the-art methods.en_US
dc.identifier.citation*******en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185274en_US
dc.identifier.emailynivetha.15@cse.mrt.ac.lken_US
dc.identifier.emailabivarshi.15@cse.mrt.ac.lken_US
dc.identifier.emailkularagini.15@cse.mrt.ac.lken_US
dc.identifier.emailrtuthaya@cse.mrt.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 650-656en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18498
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185336en_US
dc.subjectinterpretabilityen_US
dc.subjectentity descriptionen_US
dc.subjectentity hierarchical typeen_US
dc.subjectknowledge graphen_US
dc.subjectrepresentation learningen_US
dc.titleHybrid approach for accurate and interpretable representation learning of knowledge graphen_US
dc.typeConference-Full-texten_US

Files

Collections