Prevent data exfiltration on smart phones using audio distortion and machine learning

dc.contributor.authorMoonamaldeniya, M
dc.contributor.authorPriyashantha, VRSC
dc.contributor.authorGunathilake, MBNB
dc.contributor.editorAdhikariwatte, W
dc.contributor.editorRathnayake, M
dc.contributor.editorHemachandra, K
dc.date.accessioned2022-10-20T05:43:05Z
dc.date.available2022-10-20T05:43:05Z
dc.date.issued2021-07
dc.description.abstractAttacks on mobile devices have gained a significant amount of attention lately. This is because more and more individuals are switching to smartphones from traditional non-smartphones. Therefore, attackers or cybercriminals are now getting on the bandwagon to have an opportunity at obtaining information stored on smartphones. In this paper, we present an Android mobile application that will aid to minimize data exfiltration from attacks, such as, Acoustic Side-Channel Attack, Clipboard Jacking, Permission Misuse and Malicious Apps. This paper will commence its inception with an introduction explaining the current issues in general and how attacks such as side-channel attacks and clipboard jacking paved the way for data exfiltration. We will also discuss a few already existing solutions that try to mitigate these problems. Moving on to the methodology we will emphasize how we came about the solution and what methods we followed to achieve the end goal of securing the smartphone. In the final section, we will discuss the outcomes of the project and conclude what needs to be done in the future to enhance this project so that this mobile application will continue to keep the user's data safe from the criminals' grasps.en_US
dc.identifier.citationM. Moonamaldeniya, V. R. S. C. Priyashantha, M. B. N. B. Gunathilake, Y. M. P. B. Ransinghe, A. L. S. D. Ratnayake and P. K. W. Abeygunawardhana, "Prevent Data Exfiltration on Smart Phones Using Audio Distortion and Machine Learning," 2021 Moratuwa Engineering Research Conference (MERCon), 2021, pp. 345-350, doi: 10.1109/MERCon52712.2021.9525639.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2021en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon52712.2021.9525639en_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 345-350en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2021en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19171
dc.identifier.year2021en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9525639en_US
dc.subjectAndroiden_US
dc.subjectAudio jackingen_US
dc.subjectAudio distortionen_US
dc.subjectClipboard jackingen_US
dc.subjectEncryptionen_US
dc.subjectMachine learningen_US
dc.subjectMalwareen_US
dc.subjectMobile securityen_US
dc.subjectMobile applicationsen_US
dc.subjectPermissionsen_US
dc.subjectSide-channel attacken_US
dc.titlePrevent data exfiltration on smart phones using audio distortion and machine learningen_US
dc.typeConference-Full-texten_US

Files

Collections