The Eigenvectors of Single-spiked Complex Wishart Matrices: Finite and Asymptotic Analyses

dc.contributor.authorDharmawansa, P
dc.contributor.authorDissanayake, P
dc.contributor.authorChen, Y
dc.date.accessioned2023-06-14T03:54:47Z
dc.date.available2023-06-14T03:54:47Z
dc.date.issued2022
dc.description.abstractLet W 2 Cn n be a single-spiked Wishart matrix in the class W CWn(m; In + vvy) with m n, where In is the n n identity matrix, v 2 Cn 1 is an arbitrary vector with unit Euclidean norm, 0 is a non-random parameter, and ( )y represents the conjugate-transpose operator. Let u1 and un denote the eigenvectors corresponding to the smallest and the largest eigenvalues of W, respectively. This paper investigates the probability density function (p.d.f.) of the random quantity Z(n) ` = vyu` 2 2 (0; 1) for ` = 1; n. In particular, we derive a finite dimensional closed-form p.d.f. for Z(n) 1 which is amenable to asymptotic analysis as m; n diverges with m􀀀n fixed. It turns out that, in this asymptotic regime, the scaled random variable nZ(n) 1 converges in distribution to 2 2 =2(1 + ), where 2 2 denotes a chi-squared random variable with two degrees of freedom. This reveals that u1 can be used to infer information about the spike. On the other hand, the finite dimensional p.d.f. of Z(n) n is expressed as a double integral in which the integrand contains a determinant of a square matrix of dimension (n 􀀀 2). Although a simple solution to this double integral seems intractable, for special configurations of n = 2; 3, and 4, we obtain closed-form expressions.en_US
dc.identifier.citationDharmawansa, P., Dissanayake, P., & Chen, Y. (2022). The Eigenvectors of Single-Spiked Complex Wishart Matrices: Finite and Asymptotic Analyses. IEEE Transactions on Information Theory, 68(12), 8092–8120. https://doi.org/10.1109/TIT.2022.3187919en_US
dc.identifier.databaseIEEE Xploreen_US
dc.identifier.doi10.1109/TIT.2022.3187919en_US
dc.identifier.emailprathapa@uom.lken_US
dc.identifier.emailpasandissanayake@gmail.comen_US
dc.identifier.issn0018-9448en_US
dc.identifier.issue12en_US
dc.identifier.journalIEEE Transactions on Information Theoryen_US
dc.identifier.pgnos8092 - 8120en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21100
dc.identifier.volume68en_US
dc.identifier.year2022en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.subjectconvergence in distributionen_US
dc.subjecteigenvaluesen_US
dc.subjecteigenvectorsen_US
dc.subjectGauss hypergeometric functionen_US
dc.subjecthypergeometric function of two matrix argumentsen_US
dc.subjectprobability density function (p.d.f.)en_US
dc.subjectsingle-spiked covarianceen_US
dc.subjectWishart matrixen_US
dc.subjectLaguerre polynomialsen_US
dc.subjectmoment generating function (m.g.f.)en_US
dc.titleThe Eigenvectors of Single-spiked Complex Wishart Matrices: Finite and Asymptotic Analysesen_US
dc.typeArticle-Full-texten_US

Files