An adaptive yolo model for detection of faulty insulators in power transmission network using unmanned aerial vehicle

dc.contributor.authorAhnaf Shihab, ULM
dc.contributor.authorApsaan, MTMS
dc.contributor.authorFayas Ahamed, MH
dc.contributor.authorRazeeya, MRE
dc.contributor.authorJuhaniya, AIS
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-15T04:36:16Z
dc.date.available2024-03-15T04:36:16Z
dc.date.issued2023-12-09
dc.description.abstractEffective monitoring and problem detection are thought necessary for assuring continuous power supply. This study developed a machine learning approach to detect and diagnose insulator failures in power transmission lines by analyzing photos of cracked, polluted, and flash-overed insulators recorded using a drone. Through numerous rounds of the object recognition model YOLO (You Only Look Once), a diverse dataset of power transmission line photos was used to train and compare the performance of an enhanced YOLOv8x model versus YOLOv5n, YOLOv5x, YOLOv7, YOLOv7x, and YOLOv8n. Furthermore, approaches such as transfer learning and augmentation have been used to improve the model’s performance. The YOLOv8x model outperformed the other YOLO models tested, with an accuracy of 0.94, recall of 0.934, and Mean Average Precision (mAP) at 0.5 of 0.944 for insulator failure detection. The suggested fault detection machine learning approach combined with a dronebased system provides an adaptive fault monitoring system with high precision and low cost.en_US
dc.identifier.citationU. L. M. Ahnaf Shihab, M. T. M. S. Apsaan, M. H. Fayas Ahamed, M. R. F. Razeeya and A. I. S. Juhaniya, "An Adaptive YOLO Model for Detection of Faulty Insulators in Power Transmission Network Using Unmanned Aerial Vehicle," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 282-287, doi: 10.1109/MERCon60487.2023.10355499.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emailahnafshihab@gmail.comen_US
dc.identifier.emailapsaan.mtm@gmail.comen_US
dc.identifier.emailfayasmh@seu.ac.lken_US
dc.identifier.emailrazeeya@seu.ac.lken_US
dc.identifier.emailjuhani90@seu.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 282-287en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22322
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355499en_US
dc.subjectMachine learningen_US
dc.subjectInsulator faultsen_US
dc.subjectPower transmission lineen_US
dc.subjectUnmanned aerial vehicleen_US
dc.subjectDroneen_US
dc.titleAn adaptive yolo model for detection of faulty insulators in power transmission network using unmanned aerial vehicleen_US
dc.typeConference-Full-texten_US

Files

Collections