Deep learning-based power baseline modelling of a range of electrical loads in smart green buildings

dc.contributor.authorGunawardhana, KVSD
dc.contributor.authorLakshitha, WHAS
dc.contributor.authorPerera, ULDE
dc.date.accessioned2024-07-19T03:41:15Z
dc.date.available2024-07-19T03:41:15Z
dc.date.issued2023-12
dc.description.abstractEnergy consumption modelling of electrical loads plays a crucial role in modern-day energy management systems for green commercial buildings. This project focuses on the development of power baseline modelling using deep learning techniques for a diverse range of electrical loads. The baseline model, an estimation of power or energy consumption before implementing energy management, is widely used to identify savings by comparing with the measured data after implementing energy management. Energy efficiency is crucial for both commercial and non-commercial applications. Power baseline models give reference to identify energy saving or loss. We can assess energy saving after implementing energy conservation strategies and identify energy wastage of the system when actual power consumption is higher than the power baseline model prediction. In this study specifically, a comparison is made between Karl's Pearson's and Random Forest-based deep learning approaches and Recurrent Neural Network (RNN) models. This project incorporates both simulations and real-world data to conduct the study.en_US
dc.identifier.conferenceERU Symposium - 2023en_US
dc.identifier.departmentDepartment of Electrical Engineeringen_US
dc.identifier.doihttps://doi.org/10.31705/ERU.2023.17en_US
dc.identifier.emailsalithadulshan@gmail.comen_US
dc.identifier.emailsachinwickramasinghe97@gmail.comen_US
dc.identifier.emaildumindueranga@gmail.comen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 36-37en_US
dc.identifier.placeSri Lankaen_US
dc.identifier.proceedingProceedings of the ERU Symposium 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22576
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherEngineering Research Uniten_US
dc.subjectPower Baselineen_US
dc.subjectDeep Learningen_US
dc.subjectNeural Networken_US
dc.subjectEnergy Managementen_US
dc.subjectAbnormalitiesen_US
dc.titleDeep learning-based power baseline modelling of a range of electrical loads in smart green buildingsen_US
dc.typeConference-Extended-Abstracten_US

Files

Collections