Semantic learning for question and answering systems

dc.contributor.authorDilmi, VKD
dc.contributor.authorSilva, T
dc.contributor.editorFernando, KSD
dc.date.accessioned2022-11-29T08:00:03Z
dc.date.available2022-11-29T08:00:03Z
dc.date.issued2016-12
dc.description.abstractSemantic similarity methods play a significant role in different areas including community mining, document clustering, automatic metadata extraction, information retrieval, document clustering, synonym extraction. In the recent past semantic similarity has been approved as a feasible and scalable alternative to grasp natural language. This review paper presents the existing techniques in semantic similarity and how these techniques are applied in question and answering systems. Furthermore, this illustrates the drawbacks of current techniques and recommendations will be presented to improve semantic learning for question and answering systems.en_US
dc.identifier.citation******en_US
dc.identifier.conferenceInternational Conference on Information Technology Research 2016en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 59-64en_US
dc.identifier.placeMoratuwa. Sri Lankaen_US
dc.identifier.proceedingProceedings of the International Conference in Information Technology Research 2016en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19611
dc.identifier.year2016en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa, Sri Lankaen_US
dc.subjectDocument Miningen_US
dc.subjectSemantic Similarityen_US
dc.subjectQuestion Answering Systemen_US
dc.titleSemantic learning for question and answering systemsen_US
dc.typeConference-Full-texten_US

Files

Collections