Explainable AI for Speech Emotion Recognition

dc.contributor.authorPatabendige, SSJ
dc.contributor.authorThayasivam, U
dc.contributor.editorGunawardena, S
dc.date.accessioned2025-11-21T05:52:53Z
dc.date.issued2025
dc.description.abstractArtificial Intelligence (AI) has become essential across domains, excelling in classification, regression, clustering, and optimization [1]. However, the opacity of traditional AI models, particularly in Speech Emotion Recognition (SER), highlights the need for greater explainability [1]. This research advances Explainable AI (XAI) by developing SER models [2], [3]. It integrates insights from a Literature Review, enhances human-centered XAI methods, and utilizes 18 features for analysis. A feature range metric assesses model performance and explanation quality [4], contributing to a more transparent and interpretable AI framework for SER.
dc.identifier.conferenceApplied Data Science & Artificial Intelligence (ADScAI) Symposium 2025
dc.identifier.departmentDepartment of Computer Science & Engineering
dc.identifier.doihttps://doi.org/10.31705/ADScAI.2025.30
dc.identifier.emailSusarajayaweera95@gmail.com
dc.identifier.facultyEngineering
dc.identifier.placeMoratuwa, Sri Lanka
dc.identifier.proceedingProceedings of Applied Data Science & Artificial Intelligence Symposium 2025
dc.identifier.urihttps://dl.lib.uom.lk/handle/123/24428
dc.language.isoen
dc.publisherDepartment of Computer Science and Engineering
dc.subjectExplainable AI (XAI)
dc.subjectANN
dc.subjectML Models
dc.subjectSER
dc.titleExplainable AI for Speech Emotion Recognition
dc.typeConference-Extended-Abstract

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper 30 - ADScAI 2025.pdf
Size:
470.41 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections