Chesseye: an integrated framework for accurate and efficient chessboard reconstruction

dc.contributor.authorRanasinghe, P
dc.contributor.authorRanasinghe, P
dc.contributor.authorAshan, V
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-21T03:08:58Z
dc.date.available2024-03-21T03:08:58Z
dc.date.issued2023-12-09
dc.description.abstractThis research paper presents a novel and generalizable approach for precisely detecting and identifying the configuration of pieces on both 2D and 3D chessboard images with different chess sets and varying background contexts. It makes a significant milestone in the digitalization of the chess world by enabling the recreation of physical chess boards on computer screens using a single image. It also provides a framework for real-time tracking and visualization of live chess games using video frames obtained directly from the camera. The novelty lies in the methodology that achieves remarkable accuracy through four key steps: (1) identifying the corner points of the chessboard, (2) detecting the chess pieces, (3) localizing the pieces within the chessboard, and (4) evaluating the position with the best possible variations. The introduction of the Fisher Linear Discriminant Analysis-based dynamic thresholding technique contributes to the perfect 100% accuracy in distinguishing between the white and black chess pieces. The entire algorithm undergoes a thorough experimentation and evaluation process, confirming the effectiveness and versatility of the proposed approach.en_US
dc.identifier.citationP. Ranasinghe, P. Ranasinghe and V. Ashan, "ChessEye: An Integrated Framework for Accurate and Efficient Chessboard Reconstruction," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 177-182, doi: 10.1109/MERCon60487.2023.10355515.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emaile16306@eng.pdn.ac.lken_US
dc.identifier.email170483V@uom.lken_US
dc.identifier.emaile16033@eng.pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 177-182en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22349
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355515en_US
dc.subjectChessboard reconstructionen_US
dc.subjectChess piece recognitionen_US
dc.subjectKeypoint detectionen_US
dc.subjectTransfer learningen_US
dc.subjectYOLOen_US
dc.titleChesseye: an integrated framework for accurate and efficient chessboard reconstructionen_US
dc.typeConference-Full-texten_US

Files

Collections