Selecting a suitable variable combination to predict stock prices using support vector machines

dc.contributor.authorIndikadulle, P.
dc.contributor.authorHendahewa, D.
dc.contributor.authorPerera, N.
dc.contributor.authorDe Meraal, D.
dc.contributor.authorPerera, S.
dc.contributor.authorRathnayake, S.
dc.date.accessioned2021-12-06T05:37:00Z
dc.date.available2021-12-06T05:37:00Z
dc.date.issued2021-12-03
dc.description.abstractWith technological development, trading in stock markets has become more accessible to the general public. However, owing to the highly volatile nature of stock prices, stock price predictions remain a challenging task. Literature shows Support Vector Machines as a promising technique. This paper aims at identifying the best variable combination to predict the stock prices using Support Vector Machines along with the application of forward filling and linear interpolation as data filling methods and random search and grid search as hyper parameter optimization methods. After the individual evaluation of all models, data filling method of linear interpolation, hyper parameter optimization method of grid search and independent variable combinations with adjusted close price are found to give better results for prediction of stock prices.en_US
dc.identifier.conferenceInternational Conference on Business Researchen_US
dc.identifier.departmentDepartment of Decision Sciencesen_US
dc.identifier.email1176033p@uom.lken_US
dc.identifier.emaildasni.17@business.mrt.ac.lken_US
dc.identifier.emailnelusha.17@business.mrt.ac.lken_US
dc.identifier.emaildimithri.17@business.mrt.ac.lken_US
dc.identifier.emailsulaniep@uom.lken_US
dc.identifier.emailsamadhic@uom.lken_US
dc.identifier.facultyBusinessen_US
dc.identifier.pgnos1-8p.en_US
dc.identifier.placeMoratuwaen_US
dc.identifier.proceeding4th International Conference on Business Research - ICBR 2021en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/16843
dc.identifier.year2021en_US
dc.language.isoenen_US
dc.publisherBusiness Research Unit (BRU)
dc.subjectSupport Vector Machinesen_US
dc.subjectForward fillingen_US
dc.subjectLinear interpolationen_US
dc.subjectRandom searchen_US
dc.subjectGrid searchen_US
dc.titleSelecting a suitable variable combination to predict stock prices using support vector machinesen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2. 2021_01_148.pdf
Size:
812.44 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections