Recursive least square based estimation of MEMS inertial sensor stochastic models

dc.contributor.authorAbeywardena, DMW
dc.contributor.authorMunasinghe, SR
dc.date.accessioned2017-02-08T10:02:52Z
dc.date.available2017-02-08T10:02:52Z
dc.description.abstractIn this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate.en_US
dc.identifier.conference5th International Conference on Information and Automation for Sustainability (ICIAFs - 2010)en_US
dc.identifier.departmentDepartment of Electronic and Telecommunication Engineeringen_US
dc.identifier.emaildinuka@ent.mrt .ac.lken_US
dc.identifier.emailrohan@ent.mrt.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 424 - 428en_US
dc.identifier.placeColomboen_US
dc.identifier.urihttp://dl.lib.mrt.ac.lk/handle/123/12366
dc.identifier.year2010en_US
dc.language.isoenen_US
dc.relation.uri10.1109/ICIAFS.2010.5715699en_US
dc.titleRecursive least square based estimation of MEMS inertial sensor stochastic modelsen_US
dc.typeConference-Abstracten_US

Files