Chronic Kidney Disease Prediction Using Machine Learning Methods

dc.contributor.authorEkanayake, IU
dc.contributor.authorHerath, D
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-09T09:41:38Z
dc.date.available2022-08-09T09:41:38Z
dc.date.issued2020-07
dc.description.abstractChronic Kidney Disease (CKD) or chronic renal disease has become a major issue with a steady growth rate. A person can only survive without kidneys for an average time of 18 days, which makes a huge demand for a kidney transplant and Dialysis. It is important to have effective methods for early prediction of CKD. Machine learning methods are effective in CKD prediction. This work proposes a workflow to predict CKD status based on clinical data, incorporating data prepossessing, a missing value handling method with collaborative filtering and attributes selection. Out of the 11 machine learning methods considered, the extra tree classifier and random forest classifier are shown to result in the highest accuracy and minimal bias to the attributes. The research also considers the practical aspects of data collection and highlights the importance of incorporating domain knowledge when using machine learning for CKD status prediction.en_US
dc.identifier.citationI. U. Ekanayake and D. Herath, "Chronic Kidney Disease Prediction Using Machine Learning Methods," 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 260-265, doi: 10.1109/MERCon50084.2020.9185249.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185249en_US
dc.identifier.emailimeshuek@eng.pdn.ac.lken_US
dc.identifier.emaildamayanthiherath@eng.pdn.ac.lken_US
dc.identifier.facultyEngineering
dc.identifier.pgnospp. 260-265en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18583
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185249en_US
dc.subjectchronic kidney diseaseen_US
dc.subjectchronic renal diseaseen_US
dc.subjectmachine learningen_US
dc.subjectclassification algorithmsen_US
dc.subjectextra tree classifieren_US
dc.subjectrandom forest classifieren_US
dc.titleChronic Kidney Disease Prediction Using Machine Learning Methodsen_US
dc.typeConference-Full-texten_US

Files

Collections