Microcrystalline cellulose based polymer composite for engineering applications

dc.contributor.authorRajapaksha, LD
dc.contributor.authorSaumyadi, HAD
dc.contributor.authorSamarasekara, AMPB
dc.contributor.authorAmarasinghe, DAS
dc.contributor.editorSivahar, V
dc.date.accessioned2022-03-15T06:19:09Z
dc.date.available2022-03-15T06:19:09Z
dc.date.issued2017-03
dc.description.abstractIn the last several years, polymer composites have been used heavily in aerospace, automotive and other engineering applications. Polymer matrix composites (PMCs) are comprised of a variety of short or continuous fibers bound together by an organic polymer matrix. Natural fibers are recently getting attention from researchers and academia to utilize in polymer composites due to their ecofriendly nature and sustainability. Cellulose is the most abundant and renewable biopolymer on earth and is obtained from renewable resources such as biomass. Microcrystalline cellulose (MCC) is a member of cellulose family. MCC possesses many advantages compared to cellulose fibers. Polypropylene is one of the widely used thermoplastic material as matrix material in engineering applications. In this research, Polypropylene matrix with microcrystalline cellulose reinforced composite was investigated for their mechanical properties. MCC was subjected to surface modification to improve compatibility with hydrophobic Polypropylene using silane treatment. Polypropylene was mixed with surface treated MCC by varying MCC concentration (1% wt. to 5% wt.) in a laboratory type internal mixer. Composite was fabricated using compression moulding technique. Impact, tensile, hardness and water absorption tests were performed to evaluate the mechanical properties of the developed composites. Density of the developed composite was measured to estimate the weight of the developed composite. Experimental results showed that gradual increase of tensile strength, hardness and impact strength with the increase of MCC concentration. Polypropylene with 4 wt% of MCC. sample showed the maximum impact strength and it was 18.2 KJ/m 2 . Maximum water absorption (0.02%) was observed in 5wt%. MCC containing sample. 5wt%.MCC containing sample showed a maximum hardness (74.5 Shore D). Developed composite showed the gradual reduction of density from 1wt% MCC (0.880 g/cm 3 ) to 5wt% MCC (0.825 g/cm 3 ). Therefore, Polypropylene with MCC polymer composite can be used for different engineering application. This provides light weight benefits.en_US
dc.identifier.citationRajapaksha, L.D., Saumyadi, H.A.D., Samarasekara, A.M.P.B., & Amarasinghe, D.A.S. (2017). Microcrystalline cellulose based polymer composite for engineering applications [Abstract]. In V. Sivahar (Ed.), Leveraging materials for a smart future (p. 14). Society of Mechanical Engineering Students, Department of Materials Science and Engineering, University of Moratuwa.en_US
dc.identifier.conferenceMaterials Engineering Symposium on Innovations for Industry 2017en_US
dc.identifier.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.emailamarasinghes@uom.lken_US
dc.identifier.emailbandu@uom.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnosp. 14en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingLeveraging material for a smarter futureen_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/17363
dc.identifier.year2017en_US
dc.language.isoenen_US
dc.publisherSociety of Materials Engineering Students, Department of Materials Science and Engineering, University of Moratuwaen_US
dc.subjectPolymer matrix compositesen_US
dc.subjectMicrocrystalline celluloseen_US
dc.titleMicrocrystalline cellulose based polymer composite for engineering applicationsen_US
dc.typeConference-Abstracten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
394239377-14.pdf
Size:
63.29 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections