Alzheimer’s disease detection using blood gene expression data

dc.contributor.authorYasodya, GDS
dc.contributor.authorGanegoda, GU
dc.contributor.editorPiyatilake, ITS
dc.contributor.editorThalagala, PD
dc.contributor.editorGanegoda, GU
dc.contributor.editorThanuja, ALARR
dc.contributor.editorDharmarathna, P
dc.date.accessioned2024-02-06T06:02:05Z
dc.date.available2024-02-06T06:02:05Z
dc.date.issued2023-12-07
dc.description.abstractAlzheimer's disease is the most prevalent form of dementia with no established cure. Extensive research aims to comprehend its underlying mechanisms. Genetic insights are sought through gene expression data analysis, leveraging computational and statistical techniques to identify risk-associated genes. This study focuses on accurate AD detection using blood gene expression data. Four feature classification methods—TFrelated genes, Hub genes, CFG, and VAE are employed to identify crucial AD-related genes. Five classification approaches—RF, SVM, LR, L1-LR, and DNN—are used, evaluated by AUC. The VAE + LR model yields the highest AUC (0.76). The study identifies 100 influential AD-associated genes where data is sourced from Alzheimer's Disease Neuroimaging Initiative (ADNI). Findings hold promise for advancing early diagnosis and treatment, enhancing AD patients' quality of life.en_US
dc.identifier.conference8th International Conference in Information Technology Research 2023en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.emailsudam.18@itfac.mrt.ac.lken_US
dc.identifier.emailupekshag@uom.lken_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 1-6en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the 8th International Conference in Information Technology Research 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22183
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.subjectBlood gene expressionen_US
dc.subjectMachine learningen_US
dc.subjectAlzheimer’s diseaseen_US
dc.titleAlzheimer’s disease detection using blood gene expression dataen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alzheimer’s Disease detection using Blood.pdf
Size:
372.31 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections