Improving back-translation with iterative filtering and data selection for sinhala-english nmt

dc.contributor.authorEpaliyana, K
dc.contributor.authorRanathunga, S
dc.contributor.authorJayasena, S
dc.contributor.editorAdhikariwatte, W
dc.contributor.editorRathnayake, M
dc.contributor.editorHemachandra, K
dc.date.accessioned2022-10-20T04:12:31Z
dc.date.available2022-10-20T04:12:31Z
dc.date.issued2021-07
dc.description.abstractNeural Machine Translation (NMT) requires a large amount of parallel data to achieve reasonable results. For low resource settings such as Sinhala-English where parallel data is scarce, NMT tends to give sub-optimal results. This is severe when the translation is domain-specific. One solution for the data scarcity problem is data augmentation. To augment the parallel data for low resource language pairs, commonly available large monolingual corpora can be used. A popular data augmentation technique is Back-Translation (BT). Over the years, there have been many techniques to improve Vanilla BT. Prominent ones are Iterative BT, Filtering, and Data selection. We employ these in Sinhala - English extremely low resource domain-specific translation in order to improve the performance of NMT. In particular, we move forward from previous research and show that by combining these different techniques, an even better result can be obtained. Our combined model provided a +3.0 BLEU score gain over the Vanilla NMT model and a +1.93 BLEU score gain over the Vanilla BT model for Sinhala → English translation. Furthermore, a +0.65 BLEU score gain over the Vanilla NMT model and a +2.22 BLEU score gain over the Vanilla BT model were observed for English → Sinhala translation.en_US
dc.identifier.citationK. Epaliyana, S. Ranathunga and S. Jayasena, "Improving Back-Translation with Iterative Filtering and Data Selection for Sinhala-English NMT," 2021 Moratuwa Engineering Research Conference (MERCon), 2021, pp. 438-443, doi: 10.1109/MERCon52712.2021.9525800.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2021en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon52712.2021.9525800en_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnos*****en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2021en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19155
dc.identifier.year2021en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9525800en_US
dc.subjectNeural machine translationen_US
dc.subjectBack-translationen_US
dc.subjectBLEU scoreen_US
dc.subjectData selectionen_US
dc.subjectIterative Back-Translationen_US
dc.subjectIterative Filteringen_US
dc.subjectLow-resource languageen_US
dc.titleImproving back-translation with iterative filtering and data selection for sinhala-english nmten_US
dc.typeConference-Full-texten_US

Files

Collections