Adaptive centroid placement based snic for superpixel segmentation

dc.contributor.authorSenanayaka, JB
dc.contributor.authorMorawaliyadda, DT
dc.contributor.authorSenarath, ST
dc.contributor.authorGodaliyadda, RI
dc.contributor.authorEkanayake, MP
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-10T03:05:07Z
dc.date.available2022-08-10T03:05:07Z
dc.date.issued2020
dc.description.abstractThe proposed image segmentation algorithm identifies information-rich versus low information regions based on surface entropy. Thereafter on the information-rich regions, the mean shift algorithm is applied to generate possible centroid initialization points. This enables the Simple Non-Iterative Clustering (SNIC) algorithm when initialized through the proposed mechanism to provide more concentrated segmentation in those information-rich regions and sparse segmentation in the low information regions.en_US
dc.identifier.citationJ. Bandara Senanayaka, D. Thilanka Morawaliyadda, S. Tharuka Senarath, R. Indika Godaliyadda and M. Parakrama Ekanayake, "Adaptive Centroid Placement Based SNIC for Superpixel Segmentation," 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 242-247, doi: 10.1109/MERCon50084.2020.9185361.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185361en_US
dc.identifier.emailjanith.b.senanayaka@eng.pdn.ac.lken_US
dc.identifier.emaile14226@eng.pdn.ac.lken_US
dc.identifier.emailshehan.senarath@eng.pdn.ac.lken_US
dc.identifier.emailroshangodd@ee.pdn.ac.lken_US
dc.identifier.emailmpb.ekanayake@ee.pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 242-247en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18586
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185361en_US
dc.subjectImage segmentationen_US
dc.subjectsuperpixelsen_US
dc.subjectSNICen_US
dc.subjectmean shiften_US
dc.subjectentropyen_US
dc.titleAdaptive centroid placement based snic for superpixel segmentationen_US
dc.typeConference-Full-texten_US

Files

Collections