Prediction of geotechnical properties of rice husk ash-stabilized soil systems

dc.contributor.authorRanathunga, RJKPN
dc.contributor.authorSampath, KHSM
dc.contributor.authorRanathunga, AS
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-20T07:10:05Z
dc.date.available2024-03-20T07:10:05Z
dc.date.issued2023-12-09
dc.description.abstractRice Husk Ash (RHA) is one attractive alternative that is used as a full/partial replacement of cement/lime in problematic soil stabilization. This paper introduces statistical models; multiple regression analysis (MRA) and artificial neural network (ANN) for the prediction of Unconfined Compressive Strength (UCS), Soaked California Bearing Ratio (S-CBR), Maximum Dry Density (MDD), Optimum Moisture Content (OMC), and Plasticity Index (PI) of RHA-stabilized clayey soil. S-CBR and MDD of RHA-stabilized soil can be predicted with linear and non-linear MRA and UCS, OMC, and PI can be predicted with ANN models with prediction accuracy > 95%. In the validation process, all the proposed models express prediction errors around ±25%. A Parametric Analysis (PA) and a Sensitivity Analysis (SA) were performed to evaluate the variation of UCS with the influencing input parameters. In general, the analysis suggests 6-12% RHA with a very little amount of cement (4-8%) or lime (4-9%) as the optimum mix proportion for soft soil stabilization.en_US
dc.identifier.citationR. J. K. P. N. Ranathunga, K. H. S. M. Sampath and A. S. Ranathunga, "Prediction of Geotechnical Properties of Rice Husk Ash-Stabilized Soil Systems," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 240-245, doi: 10.1109/MERCon60487.2023.10355529.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emailnimashaa.ranathunga@gmail.comen_US
dc.identifier.emailsampathkh@uom.lken_US
dc.identifier.emailA.S.Ranathunga@leeds.ac.uken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 240-245en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22337
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355529en_US
dc.subjectArtificial neural networken_US
dc.subjectGeotechnical propertiesen_US
dc.subjectMultiple regression analysisen_US
dc.subjectRice husk ashen_US
dc.titlePrediction of geotechnical properties of rice husk ash-stabilized soil systemsen_US
dc.typeConference-Full-texten_US

Files

Collections