Advancements in research into piezoelectric energy harvesting insights from the research group of materials science and engineering department

dc.contributor.authorSamaraweera, RLU
dc.contributor.authorAdikary, SU
dc.contributor.editorBuddhima, P
dc.contributor.editorIndeewari, A
dc.contributor.editorGurusinghe, Y
dc.contributor.editorKonalingam, K
dc.date.accessioned2024-07-18T08:04:40Z
dc.date.available2024-07-18T08:04:40Z
dc.date.issued2023-10-14
dc.description.abstractThis unveils the remarkable progress in piezoelectric energy harvesting conducted by piezoelectric energy harvesting research group of the Department of Material Science and Engineering at the University of Moratuwa. Energy harvesting research seamlessly transforms from macro to nano levels based on international trends while emphasizing the critical aspect of system efficiency. At the macro level, a sophisticated vibration energy harvesting device designed for vehicles takes center stage. Lead zirconate titanate (PZT) was strategically chosen as the piezoelectric material, and analysis of vibration sources was undertaken to pinpoint resonant frequencies. This investigation led to the development of a robust prototype utilizing a cantilever-type configuration, wherein the Euler–Bernoulli beam theory and finite element analysis played pivotal roles in optimizing design parameters. The theoretical modeling predicted a maximum voltage, setting the stage for the practical implementation of the prototype on a motorbike. The measured output not only validated the theoretical predictions but also highlighted the real-world applicability of the macro-scale piezoelectric energy harvesting device, particularly in the context of vehicular vibrations. Based on the international trends, it seamlessly transformed into the nano-scale realm, exploring vertically integrated zinc oxide piezoelectric nanowire arrays. Leveraging COMSOL Multiphysics software, the study modeled and simulated various nanogenerator structures. Here, the focus shifts from sheer nanowire quantity to the nuanced consideration of nanowire density, revealing that the total electric energy harvested is intricately linked to density rather than the absolute number of nanowires. This shift in scale, from macro to nano, is not just a change in dimension but a deliberate evolution in understanding and optimizing piezoelectric systems. The presentation underscores a holistic journey, from macro-level vibrational energy harvesting in practical vehicular applications to the intricacies of nano-level structures, all the while emphasizing the paramount importance of system efficiency in advancing the frontiers of piezoelectric research.en_US
dc.identifier.conferenceInternational Symposium on Advanced Materials and their Applications 2023.en_US
dc.identifier.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.emailsuadi@uom.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnosP. 13en_US
dc.identifier.placeUniversity of Moratuwa.en_US
dc.identifier.proceedingProceedings of the International Symposium on Advanced Materials and their Applications 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22564
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherDepartment of Materials Science and Engineering, University of Moratuwa.en_US
dc.subjectPZTen_US
dc.subjectVibration energy harvestingen_US
dc.subjectCantilever beamen_US
dc.subjectZinc Oxide Nanowireen_US
dc.subjectFinite element analysisen_US
dc.subjectPiezoelectric Nanogeneratoren_US
dc.titleAdvancements in research into piezoelectric energy harvesting insights from the research group of materials science and engineering departmenten_US
dc.typeConference-Abstracten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Advancements in Research into Piezoelectric Energy Harvesting Insights.pdf
Size:
94.48 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections