Enhanced feature aggregation for deep neural network based speaker embedding

dc.contributor.authorThevagumaran, R
dc.contributor.authorSivaneswaran, T
dc.contributor.authorKarunarathne, B
dc.contributor.editorRathnayake, M
dc.contributor.editorAdhikariwatte, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2022-10-27T08:37:22Z
dc.date.available2022-10-27T08:37:22Z
dc.date.issued2022-07
dc.description.abstractThis paper proposes a new feature aggregation mechanism for deep neural network based speaker embedding for text-independent speaker verification. In speaker verification models, frame-level features are fed into the pooling layer or the feature aggregation component to obtain fixed-length utterance-level features. Our method utilizes the correlation between frame-level features such that dependencies between speaker discriminative information are represented with weights and produces weighted mean features with fixed-length as output. Our pooling mechanism is applied to the ECAPA-TDNN baseline architecture. In comparison to the Attentive Statistics Pooling applied to the same baseline, training on VoxCeleb1-dev dataset and an evaluation on the VoxCeleb1-test dataset shows that it reduces equal error rate (EER) by 7.32% and minimum normalized detection cost function (MinDCF10 -2 ) by 7.34%.en_US
dc.identifier.citationR. Thevagumaran, T. Sivaneswaran and B. Karunarathne, "Enhanced Feature Aggregation for Deep Neural Network Based Speaker Embedding," 2022 Moratuwa Engineering Research Conference (MERCon), 2022, pp. 1-5, doi: 10.1109/MERCon55799.2022.9906175.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2022en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon55799.2022.9906175en_US
dc.identifier.email170479N@uom.lk
dc.identifier.email170643m@uom.lk
dc.identifier.emailbuddhika@cse.mrt.ac.lk
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnos******en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2022en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19269
dc.identifier.year2022en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9906175en_US
dc.subjectText-independent speaker verificationen_US
dc.subjectSpeaker recognitionen_US
dc.subjectEcapa-tdnnen_US
dc.subjectFeature aggregationen_US
dc.titleEnhanced feature aggregation for deep neural network based speaker embeddingen_US
dc.typeConference-Full-texten_US

Files

Collections