Non-invasive tools for early detection and monitoring of sarcopenia in older individuals

dc.contributor.authorHerath, HMKKMB
dc.contributor.authorJayasekara, AGBP
dc.contributor.authorMadhusanka, BGAD
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-20T08:51:01Z
dc.date.available2024-03-20T08:51:01Z
dc.date.issued2023-12-09
dc.description.abstractSarcopenia, defined by a gradual loss of muscle mass and function, affects many elderly people and is associated with reduced mobility, greater frailty, and a higher risk of falling. Using a vision attentive model and integrating the embedded Timed Up and Go Test (TUG-T), 3-meter Walk Test (3mW-T), and fall risk analysis, this research proposes a unique method for assessing sarcopenia in elderly people. The attentive vision model uses computer vision techniques to examine TUG activities and gait speed in real-time, offering insightful information about the elderly's the functional ability and muscular strength. Moreover, this approach provides a more comprehensive assessment of sarcopenia by integrating falling risk analysis. The proposed system achieved an overall accuracy of 86.6%, outperforming the individual components: TUG test (84.0%, p<0.05), gait speed (88.2%, p<0.05), and fallen risk assessment (93.0%, p<0.05). The results indicate that this novel strategy has enormous potential for aged healthcare, enabling targeted therapies and enhancing the overall quality of life for older people at risk of issues connected to sarcopenia.en_US
dc.identifier.citationH. M. K. K. M. B. Herath, A. G. B. P. Jayasekara, B. G. D. A. Madhusanka and G. M. K. B. Karunasena, "Non-Invasive Tools for Early Detection and Monitoring of Sarcopenia in Older Individuals," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 219-224, doi: 10.1109/MERCon60487.2023.10355475.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emailkasunherathlive@gmail.com,en_US
dc.identifier.emailbuddhikaj@uom.lken_US
dc.identifier.emailachintham@sltc.ac.lken_US
dc.identifier.emailgmkar@ou.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 219-224en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22341
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355475en_US
dc.subjectElderly healthcareen_US
dc.subjectFall risken_US
dc.subjectFunctional mobilityen_US
dc.subjectSarcopeniaen_US
dc.subjectTUG testen_US
dc.subjectVision attentiveen_US
dc.titleNon-invasive tools for early detection and monitoring of sarcopenia in older individualsen_US
dc.typeConference-Full-texten_US

Files

Collections