Predicting bulk average velocity with rigid vegetation in open channels using tree‐based machine learning: a novel approach using explainable artificial intelligence

dc.contributor.authorD. P. P. Meddage 1, *, I. U. Ekanayake 2, Sumudu Herath 1 , R. Gobirahavan 3, Nitin Muttil 4,5,* and Upaka Rathnayake
dc.date.accessioned2023-06-26T04:41:49Z
dc.date.available2023-06-26T04:41:49Z
dc.date.issued2022
dc.description.abstractPredicting the bulk-average velocity (UB) in open channels with rigid vegetation is complicated due to the non-linear nature of the parameters. Despite their higher accuracy, existing regression models fail to highlight the feature importance or causality of the respective predictions. Therefore, we propose a method to predict UB and the friction factor in the surface layer (fS) using tree-based machine learning (ML) models (decision tree, extra tree, and XGBoost). Further, Shapley Additive exPlanation (SHAP) was used to interpret the ML predictions. The comparison emphasized that the XGBoost model is superior in predicting UB (R = 0.984) and fS (R = 0.92) relative to the existing regression models. SHAP revealed the underlying reasoning behind predictions, the dependence of predictions, and feature importance. Interestingly, SHAP adheres to what is generally observed in complex flow behavior, thus, improving trust in predictions.en_US
dc.identifier.citationMeddage, D. P. P., Ekanayake, I. U., Herath, S., Gobirahavan, R., Muttil, N., & Rathnayake, U. (2022). Predicting Bulk Average Velocity with Rigid Vegetation in Open Channels Using Tree-Based Machine Learning: A Novel Approach Using Explainable Artificial Intelligence. Sensors, 22(12), Article 12. https://doi.org/10.3390/s22124398en_US
dc.identifier.doihttps://doi.org/10.3390/s22124398en_US
dc.identifier.issn1424-8220en_US
dc.identifier.issue12en_US
dc.identifier.journalSensorsen_US
dc.identifier.pgnos4398[29p.]en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21159
dc.identifier.volume22en_US
dc.identifier.year2022en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.subjectbulk average velocityen_US
dc.subjectexplainable artificial intelligenceen_US
dc.subjectrigid vegetationen_US
dc.subjecttree-based machine learningen_US
dc.titlePredicting bulk average velocity with rigid vegetation in open channels using tree‐based machine learning: a novel approach using explainable artificial intelligenceen_US
dc.typeArticle-Full-texten_US

Files