Machine learning-based approach for modelling elastic modulus of woven fabrics

dc.contributor.authorKularatne, SDMW
dc.contributor.authorRanawaka, RAHS
dc.contributor.authorFernando, EASK
dc.contributor.authorNiles, SN
dc.contributor.authorJayawardane, TSS
dc.contributor.authorRanaweera, RKPS
dc.contributor.editorEdussooriya, C
dc.contributor.editorWeeraddana, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-08T04:06:25Z
dc.date.available2022-08-08T04:06:25Z
dc.date.issued2020-07
dc.description.abstractThere has been a shift of focus from aesthetic properties to mechanical and functional properties of textiles with the recent developments in technical textiles and wearable technology. Therefore, understanding how various fabric parameters influence the mechanical properties of fabrics is paramount. In applications where compression and stretching of fabrics are important, the elastic modulus is a key fabric property that needed to be controlled precisely. Woven fabrics are capable of providing superior elastic properties, but how various fabric parameters affect elastic modulus is not well understood. In this study, two machine learning techniques were implemented to model the elastic modulus of woven fabrics and were compared with multivariable regressions. The two machine learning techniques used are Artificial Neural Network (ANN) and Random Forest Regression. As input variables; weave factor (numerical representation of weave structure), warp yarn count and pick density were used. Both ANN and Random Forest Regression were able to generate reasonably accurate results with Random Forest Regression been the better of the two methods. Using Random Forest Regression, feature importance of the input variables was obtained, and it proved that the weave structure has a notable impact on the elastic modulus of woven fabrics.en_US
dc.identifier.citationS. D. M. W. Kularatne, R. A. H. S. Ranawaka, E. A. S. K. Fernando, S. N. Niles, T. S. S. Jayawardane and R. K. P. S. Ranaweera, "Machine Learning-based Approach for Modelling Elastic Modulus of Woven Fabrics," 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 470-475, doi: 10.1109/MERCon50084.2020.9185295.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185295en_US
dc.identifier.emailmwindula16@gmail.comen_US
dc.identifier.emailranavaka1995@gmail.comen_US
dc.identifier.emailsandunf@uom.lken_US
dc.identifier.emailniles@uom.lken_US
dc.identifier.emailaya@uom.lken_US
dc.identifier.emailpubudur@uom.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 470-475en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18534
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185295en_US
dc.subjectElastic modulusen_US
dc.subjectWeave factoren_US
dc.subjectModelling textile propertiesen_US
dc.subjectArtificial Neural Network (ANN)en_US
dc.subjectRandom Forest Regressionen_US
dc.titleMachine learning-based approach for modelling elastic modulus of woven fabricsen_US
dc.typeConference-Full-texten_US

Files

Collections