Siamese networks for multilingual classified ad matching

dc.contributor.authorChathunka, P
dc.contributor.authorAlwis, D
dc.contributor.authorRawishanka, R
dc.contributor.authorPerera, I
dc.date.accessioned2025-12-08T04:39:44Z
dc.date.issued2025
dc.description.abstractThis paper presents a novel approach to semantically match ”Resource Wanted” and ”Resource Offering” classified ads within Sri Lanka’s complex multilingual digital marketplace. We introduce a Siamese neural network architecture specifically designed to effectively process both textual content and categorical metadata across English and Sinhala languages. Our model leverages advanced multilingual transformer models to create semantically rich embeddings, with a LaBSEbased implementation achieving superior performance, reaching a Recall@1 of 0.5813 and a Recall@10 of 0.9151. Crucially, the integration of categorical features with text embeddings yielded the best results, demonstrating a 1.5% improvement in Recall@1over the text-only approach. Our methodology addresses the significant challenge of matching ads across linguistic boundaries in a low-resource setting, providing a method that can significantly improve transaction efficiency in Sri Lanka’s diverse digital marketplace.
dc.identifier.conferenceMoratuwa Engineering Research Conference 2025
dc.identifier.departmentEngineering Research Unit, University of Moratuwa
dc.identifier.emailpamudu.20@cse.mrt.ac.lk
dc.identifier.emaildamikaa.20@cse.mrt.ac.lk
dc.identifier.emailrasindu.20@cse.mrt.ac.lk
dc.identifier.emailindika@cse.mrt.ac.lk
dc.identifier.facultyEngineering
dc.identifier.isbn979-8-3315-6724-8
dc.identifier.pgnospp. 758-763
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2025
dc.identifier.urihttps://dl.lib.uom.lk/handle/123/24521
dc.language.isoen
dc.publisherIEEE
dc.subjectmultilingual classified ads
dc.subjectsemantic matching
dc.subjectLaBSE
dc.subjectSiamese network
dc.subjectad classification
dc.titleSiamese networks for multilingual classified ad matching
dc.typeConference-Full-text

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1571154432.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections