Web User Profiling using Hierarchical Clustering with Improved Similarity Measure

dc.contributor.authorAlgiriyage, N
dc.contributor.authorJayasena, S
dc.contributor.authorDias, G
dc.date.accessioned2015-08-03T10:09:37Z
dc.date.available2015-08-03T10:09:37Z
dc.date.issued2015-08-03
dc.description.abstractWeb user profiling targets grouping users in to clusters with similar interests. Web sites are attracted by many visitors and gaining insight to the patterns of access leaves lot of information. Web server access log files record every single request processed by web site visitors. Applying web usage mining techniques allow to identify interesting patterns. In this paper we have improved the similarity measure proposed by Vel´asquez et al. [1] and used it as the distance measure in an agglomerative hierarchical clustering for a data set from an online banking web site. To generate profiles, frequent item set mining is applied over the clusters. Our results show that proper visitor clustering can be achieved with the improved similarity measure.en_US
dc.description.sponsorshipIEEE IEEE Sri Lanka Section Robotics and Automation Section Chapter, IEEE Sri Lanka Sectionen_US
dc.identifier.conferenceMERCon 2015 Moratuwa Engineering Research Conferenceen_US
dc.identifier.departmentDepartment of Computer Science & Engineering University of Moratuwa Sri-Lankaen_US
dc.identifier.emailrangika.nilani@gmail.comen_US
dc.identifier.emailsanath@cse.mrt.ac.lken_US
dc.identifier.emailgihan@cse.mrt.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnosp 67en_US
dc.identifier.placeUniversity of Moratuwa, Sri Lankaen_US
dc.identifier.urihttp://dl.lib.mrt.ac.lk/handle/123/11101
dc.identifier.year2015en_US
dc.language.isoenen_US
dc.titleWeb User Profiling using Hierarchical Clustering with Improved Similarity Measureen_US
dc.typeConference-Full-texten_US

Files