Reduction of fibrillar strain-rate sensitivity in steroid-induced osteoporosis linked to changes in mineralized fibrillar nanostructure

dc.contributor.authorXi, L
dc.contributor.authorDe Falco, P
dc.contributor.authorBarbieri, E
dc.contributor.authorKarunathilake, A
dc.contributor.authorBentley, L
dc.contributor.authorEsapa, CT
dc.contributor.authorDavis, GR
dc.contributor.authorTerrill, NJ
dc.contributor.authorCox, RD
dc.contributor.authorPugno, NM
dc.contributor.authorThakker, RV
dc.contributor.authorWeinkamer, R
dc.contributor.authorWu, WW
dc.contributor.authorFang, DN
dc.contributor.authorGupta, HS
dc.date.accessioned2023-03-21T06:12:00Z
dc.date.available2023-03-21T06:12:00Z
dc.date.issued2020
dc.description.abstractAs bone is used in a dynamic mechanical environment, understanding the structural origins of its time-dependent mechanical behaviour - and the alterations in metabolic bone disease - is of interest. However, at the scale of the mineralized fibrillar matrix (nanometre-level), the nature of the strain-rate dependent mechanics is incompletely understood. Here, we investigate the fibrillar- and mineral-deformation behaviour in a murine model of Cushing's syndrome, used to understand steroid induced osteoporosis, using synchrotron small- and wide-angle scattering/diffraction combined with in situ tensile testing at three strain rates ranging from 10-4 to 10-1 s-1. We find that the effective fibril- and mineral-modulus and fibrillar-reorientation show no significant increase with strain-rate in osteoporotic bone, but increase significantly in normal (wild-type) bone. By applying a fibril-lamellar two-level structural model of bone matrix deformation to fit the results, we obtain indications that altered collagen-mineral interactions at the nanoscale - along with altered fibrillar orientation distributions - may be the underlying reason for this altered strain-rate sensitivity. Our results suggest that an altered strain-rate sensitivity of the bone matrix in osteoporosis may be one of the contributing factors to reduced mechanical competence in such metabolic bone disorders, and that increasing this sensitivity may improve biomechanical performance.en_US
dc.identifier.citationXi, L., De Falco, P., Barbieri, E., Karunaratne, A., Bentley, L., Esapa, C. T., Davis, G. R., Terrill, N. J., Cox, R. D., Pugno, N. M., Thakker, R. V., Weinkamer, R., Wu, W. W., Fang, D. N., & Gupta, H. S. (2020). Reduction of fibrillar strain-rate sensitivity in steroid-induced osteoporosis linked to changes in mineralized fibrillar nanostructure. Bone, 131, 115111. https://doi.org/10.1016/j.bone.2019.115111en_US
dc.identifier.databaseScienceDirecten_US
dc.identifier.doi10.1016/j.bone.2019.115111en_US
dc.identifier.issn1873-2763en_US
dc.identifier.journalBoneen_US
dc.identifier.pgnos115111en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/20784
dc.identifier.volume131en_US
dc.identifier.year2020en_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.subjectGlucocorticoid induced osteoporosisen_US
dc.subjectMultiscaleen_US
dc.subjectMechanical modelling;en_US
dc.subjectNanoscale deformation mechanismsen_US
dc.subjectSynchrotron X-ray nanomechanical imaging.en_US
dc.titleReduction of fibrillar strain-rate sensitivity in steroid-induced osteoporosis linked to changes in mineralized fibrillar nanostructureen_US
dc.typeArticle-Full-texten_US

Files