Eye gaze estimation: A survey on deep learning-based approaches

dc.contributor.authorPathirana, P
dc.contributor.authorSenarath, S
dc.contributor.authorMeedeniya, D
dc.contributor.authorJayarathna, S
dc.date.accessioned2023-06-22T05:09:53Z
dc.date.available2023-06-22T05:09:53Z
dc.date.issued2022
dc.description.abstractHuman gaze estimation plays a major role in many applications in human-computer interaction and computer vision by identifying the users’ point-of-interest. The revolutionary developments of deep learning have captured significant attention in the gaze estimation literature. Gaze estimation techniques have progressed from single-user constrained environments to multiuser unconstrained environments with the applicability of deep learning techniques in complex unconstrained environments with extensive variations. This paper presents a comprehensive survey of the single-user and multi-user gaze estimation approaches with deep learning. The state-of-the-art approaches are analyzed based on deep learning model architectures, coordinate systems, environmental constraints, datasets and performance evaluation metrics.Akey outcome from this survey realizes the limitations, challenges, and future directions of multi-user gaze estimation techniques. Furthermore, this paper serves as a reference point and a guideline for future multi-user gaze estimation research.en_US
dc.identifier.citationPathirana, P., Senarath, S., Meedeniya, D., & Jayarathna, S. (2022). Eye gaze estimation: A survey on deep learning-based approaches. Expert Systems with Applications: An International Journal, 199(C). [29p.]. https://doi.org/10.1016/j.eswa.2022.116894en_US
dc.identifier.databaseScienceDirecten_US
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.116894en_US
dc.identifier.email1c7a@sc-seem.amirlten_US
dc.identifier.emailjapce.glken_US
dc.identifier.emailshashimalsenarath.17@cse.mrt.ac.lken_US
dc.identifier.emaildulanim@cse.mrt.ac.lken_US
dc.identifier.emailsampath@cs.odu.eduen_US
dc.identifier.issn0957-4174en_US
dc.identifier.issueCen_US
dc.identifier.journalExpert Systems with Applicationsen_US
dc.identifier.pgnos[29p.]en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21145
dc.identifier.volume199en_US
dc.identifier.year2022en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.titleEye gaze estimation: A survey on deep learning-based approachesen_US
dc.typeArticle-Full-texten_US

Files