Exploring asymmetrical white matter abnormalities in Alzheimer’s using deep learning

dc.contributor.authorSrivishagan, S
dc.contributor.authorKumaralingam, L
dc.contributor.authorRatnarajah, N
dc.contributor.authorThanikasalam, K
dc.contributor.authorPinidiyaarachchi, AJ
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-21T08:25:03Z
dc.date.available2024-03-21T08:25:03Z
dc.date.issued2023-12-09
dc.description.abstractDespite the availability of various diagnostic techniques and extensive research efforts aimed at understanding Alzheimer’s disease (AD), accurately and automatically diagnosing AD using biomarkers and comprehending the intricate structural changes in the Alzheimer’s brain using state-of-theart technologies remains a significant challenge. In particular, the asymmetrical white matter abnormalities in the Alzheimer’s brain’s structural connectivity have been poorly studied. To address this critical issue, this paper presents a novel approach that detects AD by feeding the structural hemispherical brain networks to a Convolutional Neural Network (CNN) based classification model and then pinpointing the discriminative asymmetrical in white matter connectivity changes through the interpretations of classification choices. This study found significant outcomes regarding asymmetrical intra-hemispheric connections in AD. These outcomes include distinct connectivity changes in the left and right hemispheres, significant changes primarily in the left hemisphere, discriminative changes involving more subcortical regions in both hemispheres, and increased temporal-subcortical and frontal-subcortical connectivity changes in the left hemisphere. This research has the potential to enhance diagnostic accuracy, improve understanding of the disease, and shed light on its asymmetric nature.en_US
dc.identifier.citationS. Srivishagan, L. Kumaralingam, N. Ratnarajah, K. Thanikasalam and A. J. Pinidiyaarachchi, "Exploring Asymmetrical White Matter Abnormalities in Alzheimer’s using Deep Learning," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 113-118, doi: 10.1109/MERCon60487.2023.10355503.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emailsubaramya@vau.ac.lken_US
dc.identifier.emaillogiraj@ualberta.caen_US
dc.identifier.emailrnagulan@univ.jfn.ac.lken_US
dc.identifier.emailkokul@univ.jfn.ac.lken_US
dc.identifier.emailajp@pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 113-118en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22365
dc.identifier.year2023en_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355503en_US
dc.subjectAlzheimer’s diseaseen_US
dc.subjectConvolutional neural networken_US
dc.subjectCerebral asymmetryen_US
dc.subjectStructural brain networken_US
dc.titleExploring asymmetrical white matter abnormalities in Alzheimer’s using deep learningen_US

Files

Collections