Walking behavior mapping and spatiotemporal analysis using mobile phone and GEOAI

dc.contributor.authorSawandi, H
dc.contributor.authorJayasinghe, A
dc.contributor.authorRetscher, G
dc.contributor.editorGunaruwan, T. L.
dc.date.accessioned2025-02-03T03:00:25Z
dc.date.available2025-02-03T03:00:25Z
dc.date.issued2024
dc.description.abstractCurrently, there is an ongoing discussion regarding the role of urban planning and transport planning in the development of walkable cities. It argues for rethinking the technology-centric approach that combines urban/transport planning and technological domains, such as developing field called Geospatial Artificial Intelligence (GEOAI). This study addressed theoretical and practical challenges in walking behavior analysis. First, map pedestrian walking behavior. Second, quantifying spatiotemporal element’s impact on walking behavior is challenging. The utilization of GEOAI in this field is still deficient. The methodology of this study employs GPS-enabled location-based services to capture walking behavior and street view, isovist factors, and space syntax to quantify the environment. This method maps walking behavior using GIS and k-means clustering, an unsupervised machine-learning model used for splitting data. Additionally, Extreme Gradient Boosting (XGBoost), a supervised machine learning, is employed to analyze how spatiotemporal factors influence walking behavior. The findings highlight a significant relationship between tree view, mean depth, choice, and walking behavior. This research provides transport and urban planners with crucial insights and a novel methodological framework to develop more walkable cities, optimize urban design, transport planning strategies, and enhance urban livability and sustainability.en_US
dc.identifier.conferenceResearch for Transport and Logistics Industry Proceedings of the 9th International Conferenceen_US
dc.identifier.departmentDepartment of Town & Country Planningen_US
dc.identifier.departmentDepartment of Transport Management & Logistics Engineeringen_US
dc.identifier.emailsawandiwsh.19@uom.lken_US
dc.identifier.emailamilabj@uom.lk,en_US
dc.identifier.emailguenther.retscher@tuwien.ac.aten_US
dc.identifier.facultyEngineeringen_US
dc.identifier.issn2513-2504
dc.identifier.pgnospp. 69-71en_US
dc.identifier.placeColombo, Sri Lankaen_US
dc.identifier.proceedingProceedings of the International Conference on Research for Transport and Logistics Industryen_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/23365
dc.identifier.year2024en_US
dc.language.isoenen_US
dc.publisherSri Lanka Society of Transport and Logisticsen_US
dc.subjectWaking Behavioren_US
dc.subjectGEOAIen_US
dc.subjectLBSen_US
dc.subjectMachine Learningen_US
dc.subjectSustainable Urban Mobility Developmenten_US
dc.titleWalking behavior mapping and spatiotemporal analysis using mobile phone and GEOAIen_US
dc.typeConference-Full-texten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
69-71.pdf
Size:
323.75 KB
Format:
Adobe Portable Document Format
Description:
69-71

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections