Neural networks for determination of subsurface targets in multi layer soil structure

dc.contributor.authorDharrnadasa, IT
dc.contributor.authorLucas, JR
dc.contributor.authorUdawatta, UKDL
dc.contributor.authorWijayapala, WDAS
dc.date.accessioned2013-10-21T02:12:35Z
dc.date.available2013-10-21T02:12:35Z
dc.date.issued2008
dc.date.issued2008
dc.description.abstractThis paper results the research carried on the 2D resistivity inversion problem, where resistivity distribution is determined from the apparent resistivity measurements using the Artificial Neural Networks. Neural Network (NN) is trained with the synthetic data generated using a 56 multi electrode Wenner array with 1 m electrode spacing. The geoelectrical model studied show encouraging results for the applicability of the well trained NN 's as a fast 2D resistivity inversion tool for field resistivity measurements
dc.identifier.conferenceResearch for Industry
dc.identifier.pgnos99-101
dc.identifier.placeFaculty of Engineering, University of Moratuwa
dc.identifier.proceeding14th Annual Symposium on Research and Industry
dc.identifier.urihttp://dl.lib.mrt.ac.lk/handle/123/8142
dc.identifier.year2008
dc.languageen
dc.titleNeural networks for determination of subsurface targets in multi layer soil structure
dc.typeConference-Abstract

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ERU_2008_040.pdf
Size:
20.29 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description:

Collections