Neural machine translation for low-resource languages: A Survey

dc.contributor.authorRanathunga, S.
dc.contributor.authorLee, E.-S. A
dc.contributor.authorPrifti Skenduli, M
dc.contributor.authorShekhar, R
dc.contributor.authorAlam, M.
dc.contributor.authorKaur, R.
dc.date.accessioned2023-12-01T06:17:32Z
dc.date.available2023-12-01T06:17:32Z
dc.date.issued2023
dc.description.abstractNeural Machine Translation (NMT) has seen tremendous growth in the last ten years since the early 2000s and has already entered a mature phase. While considered the most widely used solution for Machine Translation, its performance on low-resource language pairs remains sub-optimal compared to the high-resource counterparts due to the unavailability of large parallel corpora. Therefore, the implementation of NMT techniques for low-resource language pairs has been receiving the spotlight recently, thus leading to substantial research on this topic. This article presents a detailed survey of research advancements in low-resource language NMT (LRL-NMT) and quantitative analysis to identify the most popular techniques. We provide guidelines to select the possible NMT technique for a given LRL data setting based on our findings. We also present a holistic view of the LRL-NMT research landscape and provide recommendations to enhance the research efforts further.en_US
dc.identifier.citationRanathunga, S., Lee, E.-S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural Machine Translation for Low-resource Languages: A Survey. ACM Computing Surveys, 55(11), 229 (1-37). https://doi.org/10.1145/3567592en_US
dc.identifier.databaseACM Digital Libraryen_US
dc.identifier.doihttps://doi.org/10.1145/3567592en_US
dc.identifier.issn0360-0300en_US
dc.identifier.issue11en_US
dc.identifier.journalACM Computing Surveysen_US
dc.identifier.pgnos229 (1-37)en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21868
dc.identifier.volume55en_US
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.subjectLow-Resource Languagesen_US
dc.subjectUnsupervised NMTen_US
dc.subjectNeural Machine Translationen_US
dc.subjectSemi-supervised NMTen_US
dc.subjectMultilingual NMTen_US
dc.subjectTransfer Learningen_US
dc.subjectData Augmentationen_US
dc.subjectZero-shot Translationen_US
dc.subjectPivotingen_US
dc.titleNeural machine translation for low-resource languages: A Surveyen_US
dc.typeArticle-Full-texten_US

Files