Neural machine translation for low-resource languages: A Survey
dc.contributor.author | Ranathunga, S. | |
dc.contributor.author | Lee, E.-S. A | |
dc.contributor.author | Prifti Skenduli, M | |
dc.contributor.author | Shekhar, R | |
dc.contributor.author | Alam, M. | |
dc.contributor.author | Kaur, R. | |
dc.date.accessioned | 2023-12-01T06:17:32Z | |
dc.date.available | 2023-12-01T06:17:32Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Neural Machine Translation (NMT) has seen tremendous growth in the last ten years since the early 2000s and has already entered a mature phase. While considered the most widely used solution for Machine Translation, its performance on low-resource language pairs remains sub-optimal compared to the high-resource counterparts due to the unavailability of large parallel corpora. Therefore, the implementation of NMT techniques for low-resource language pairs has been receiving the spotlight recently, thus leading to substantial research on this topic. This article presents a detailed survey of research advancements in low-resource language NMT (LRL-NMT) and quantitative analysis to identify the most popular techniques. We provide guidelines to select the possible NMT technique for a given LRL data setting based on our findings. We also present a holistic view of the LRL-NMT research landscape and provide recommendations to enhance the research efforts further. | en_US |
dc.identifier.citation | Ranathunga, S., Lee, E.-S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural Machine Translation for Low-resource Languages: A Survey. ACM Computing Surveys, 55(11), 229 (1-37). https://doi.org/10.1145/3567592 | en_US |
dc.identifier.database | ACM Digital Library | en_US |
dc.identifier.doi | https://doi.org/10.1145/3567592 | en_US |
dc.identifier.issn | 0360-0300 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.journal | ACM Computing Surveys | en_US |
dc.identifier.pgnos | 229 (1-37) | en_US |
dc.identifier.uri | http://dl.lib.uom.lk/handle/123/21868 | |
dc.identifier.volume | 55 | en_US |
dc.identifier.year | 2023 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Association for Computing Machinery | en_US |
dc.subject | Low-Resource Languages | en_US |
dc.subject | Unsupervised NMT | en_US |
dc.subject | Neural Machine Translation | en_US |
dc.subject | Semi-supervised NMT | en_US |
dc.subject | Multilingual NMT | en_US |
dc.subject | Transfer Learning | en_US |
dc.subject | Data Augmentation | en_US |
dc.subject | Zero-shot Translation | en_US |
dc.subject | Pivoting | en_US |
dc.title | Neural machine translation for low-resource languages: A Survey | en_US |
dc.type | Article-Full-text | en_US |