Rank-1 Matrix Approximation-Based Channel Estimation for Intelligent Reflecting Surface-Aided Multi-User MISO Communications

dc.date.accessioned2023-05-22T08:52:12Z
dc.date.available2023-05-22T08:52:12Z
dc.date.issued2021
dc.description.abstractThe acquisition of channel state information is an essential step in enabling intelligent reflecting surfaces (IRSs) for wireless communications. In this letter, we introduce a novel procedure to estimate the cascaded channel between the base station (BS), IRS, and users in a multi-user multiple-input singleoutput system. The common BS-IRS channel, over which all users transmit, is leveraged to decompose the cascaded channel into a series of rank-1 matrices. Low-rank matrix recovery methods are utilized to improve upon the linear minimum mean-squared error estimate of the cascaded channel. A theoretical upper bound for the mean-square error (MSE) of the proposed estimator is derived. Numerical results reveal that the proposed techniques outperform the existing counterparts in terms of the MSE and scale with the number of BS antennas.en_US
dc.identifier.citationSumanthiran, S., Kudathanthirige, D., Hemachandra, K. T., Samarasinghe, T., & Baduge, G. A. (2021). Rank-1 Matrix Approximation-Based Channel Estimation for Intelligent Reflecting Surface-Aided Multi-User MISO Communications. IEEE Communications Letters, 25(8), 2589–2593. https://doi.org/10.1109/LCOMM.2021.3081356en_US
dc.identifier.databaseIEEE Xploreen_US
dc.identifier.doi10.1109/LCOMM.2021.3081356en_US
dc.identifier.issn1089-7798en_US
dc.identifier.issue8en_US
dc.identifier.journalIEEE Communications Lettersen_US
dc.identifier.pgnos2589 - 2593en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/21060
dc.identifier.volume25en_US
dc.identifier.year2021en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectIRSen_US
dc.subjectchannel estimationen_US
dc.titleRank-1 Matrix Approximation-Based Channel Estimation for Intelligent Reflecting Surface-Aided Multi-User MISO Communicationsen_US
dc.typeArticle-Full-texten_US

Files