Deep neural networks for acoustic modeling – a review

dc.contributor.authorSiriwardene, S
dc.contributor.editorFernando, KSD
dc.date.accessioned2022-11-29T08:08:13Z
dc.date.available2022-11-29T08:08:13Z
dc.date.issued2016-12
dc.description.abstractAcoustic modeling refers to a statistical model that converts the speech signal to a set of phonetics related to each set of feature vectors extracted through pre processing the sound signal. A traditional approach to this problem is Hidden Markov Models (HMM), a probability model that maps each input with a hidden state. Deep neural networks are used for acoustic modeling due to their efficient feature extraction ability. This paper reviews the various forms of neural networks used in combination with HMMs for speech recognition.en_US
dc.identifier.citation******en_US
dc.identifier.conferenceInternational Conference on Information Technology Research 2016en_US
dc.identifier.departmentInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa.en_US
dc.identifier.facultyITen_US
dc.identifier.pgnospp. 45-51en_US
dc.identifier.placeMoratuwa. Sri Lankaen_US
dc.identifier.proceedingProceedings of the International Conference in Information Technology Research 2016en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19613
dc.identifier.year2016en_US
dc.language.isoenen_US
dc.publisherInformation Technology Research Unit, Faculty of Information Technology, University of Moratuwa, Sri Lankaen_US
dc.subjectHidden markov modelen_US
dc.subjectDeep neural networken_US
dc.subjectDeep belief networksen_US
dc.subjectConvolutional neural networksen_US
dc.titleDeep neural networks for acoustic modeling – a reviewen_US
dc.typeConference-Full-texten_US

Files

Collections