Device-free user authentication, activity classification and tracking using passive WI-fi sensing: a deep learning-based approach

dc.contributor.authorJayasundara, V
dc.contributor.authorJayasekara, H
dc.contributor.authorSamarasinghe, T
dc.contributor.authorHemachandra, KT
dc.date.accessioned2023-02-22T09:27:48Z
dc.date.available2023-02-22T09:27:48Z
dc.date.issued2020
dc.description.abstractGrowing concerns over privacy invasion due to video camera based monitoring systems have made way to non-invasive Wi-Fi signal sensing based alternatives. This paper introduces a novel end-to-end deep learning framework that utilizes the changes in orthogonal frequency division multiplexing (OFDM) sub-carrier amplitude information to simultaneously predict the identity, activity and the trajectory of a user and create a user profile that is of similar utility to a one made through a video camera based approach. The novelty of the proposed solution is that the system is fully autonomous and requires zero user intervention unlike systems that require user originated initialization, or a user held transmitting device to facilitate the prediction. Experimental results demonstrate over 95% accuracy for user identification and activity recognition, while the user localization results exhibit a ±12cm error, which is a significant improvement over the existing user tracking methods that utilize passive Wi-Fi signals.en_US
dc.identifier.citationJayasundara, V., Jayasekara, H., Samarasinghe, T., & Hemachandra, K. T. (2020). Device-Free User Authentication, Activity Classification and Tracking Using Passive Wi-Fi Sensing: A Deep Learning-Based Approach. IEEE Sensors Journal, 20(16), 9329–9338. https://doi.org/10.1109/JSEN.2020.2987386en_US
dc.identifier.databaseIEE Xploreen_US
dc.identifier.doi10.1109/JSEN.2020.2987386en_US
dc.identifier.issn1558-1748en_US
dc.identifier.issue16en_US
dc.identifier.journalIEEE Sensors Journalen_US
dc.identifier.pgnos9329-9338en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/20595
dc.identifier.volume20en_US
dc.identifier.year2020en_US
dc.language.isoen_USen_US
dc.publisherIEEen_US
dc.subjectActivity Classificationen_US
dc.subjectBidirectional Gated Recurrent Unit (Bi-GRU)en_US
dc.subjectTrackingen_US
dc.subjectLong Short-Term Memory (LSTM)en_US
dc.subjectUser Authenticationen_US
dc.subjectWi-Fien_US
dc.titleDevice-free user authentication, activity classification and tracking using passive WI-fi sensing: a deep learning-based approachen_US
dc.typeArticle-Full-texten_US

Files