Object identification using support vector regression for haptic object reconstruction

dc.contributor.authorDewapura, PW
dc.contributor.authorJayawardhana, KDM
dc.contributor.authorAbeykoon, AMHS
dc.contributor.editorAbeykoon, AMHS
dc.contributor.editorVelmanickam, L
dc.date.accessioned2022-03-24T07:47:33Z
dc.date.available2022-03-24T07:47:33Z
dc.date.issued2021-09
dc.description.abstractThe lack of realistic haptic feedback has become a significant barrier to achieve realization in virtual reality. If an object is to be reproduced in the haptic dimension, it's essential to analyze the object behavior for mechanical inputs. Nevertheless, prior studies have considered model-based approaches to model the behavior of the real object for reconstruction, and the conventional spring-damper model was the most widely used. However, proper object identification is crucial in accurate haptic object modeling for reconstruction. Thus, this paper proposes an AI-based approach using a nonlinear regression algorithm, Support Vector Regression (SVR). AI algorithm predicts the object’s response for motion parameters by analyzing the nonlinear responses from the object extracted through a sensorless sensing system based on disturbance observer (DOB) and reaction force observer (RFOB). Furthermore, the viability of the proposed approach is demonstrated by comparing it to the conventional model-based approach.en_US
dc.identifier.citationDewapura, P.W., Jayawardhana, K.D.M., & Abeykoon, A.M.H.S. (2021). Object identification using support vector regression for haptic object reconstruction. In A.M.H.S. Abeykoon & L. Velmanickam (Eds.), Proceedings of 3rd International Conference on Electrical Engineering 2021 (pp.150-156). Institute of Electrical and Electronics Engineers, Inc. https://ieeexplore.ieee.org/xpl/conhome/9580924/proceedingen_US
dc.identifier.conference3rd International Conference on Electrical Engineering 2021en_US
dc.identifier.departmentDepartment of Electrical Engineeringen_US
dc.identifier.emailpwdewapura@gmail.comen_US
dc.identifier.emailmalithjayawardhana@gmail.comen_US
dc.identifier.emailharsha@uom.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 150-156en_US
dc.identifier.placeColomboen_US
dc.identifier.proceedingProceedings of 3rd International Conference on Electrical Engineering 2021en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/17453
dc.identifier.year2021en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers, Inc.en_US
dc.relation.urihttps://ieeexplore.ieee.org/xpl/conhome/9580924/proceedingen_US
dc.subjectHaptic informationen_US
dc.subjectVirtual realityen_US
dc.subjectDisturbance observeren_US
dc.subjectForce responseen_US
dc.subjectVirtual object reconstructionen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectSupport vector regressionen_US
dc.titleObject identification using support vector regression for haptic object reconstructionen_US
dc.typeConference-Full-texten_US

Files

Collections