Mean shift kalman object tracking for video surveillance

dc.contributor.authorFernando, S
dc.contributor.authorCooray, TMJA
dc.date.accessioned2015-07-23T10:44:18Z
dc.date.available2015-07-23T10:44:18Z
dc.date.issued2015-07-23
dc.description.abstractIn this paper we propose the mean shift Kalman object tracking algorithm for video surveillance which is based on the mean shift algorithm and the Kalman filter. The classical mean shift algorithm for tracking in perfectly maintained conditions constitutes a good tracking method. This was based on color to predict the location of the object in the video frame. However in a real cluttered environment this fails, especially under the presence of noise or occlusions. In order to deal with these problems this method employs a Kalman filter to the classical mean shift algorithm to enhance the chance of tracking accuracy especially when the object disappears from the scene, the algorithm can still track the object after it comes out. The experimental results verifies the ability of the mean shift Kalman object tracking algorithm which can locate the target object correctly even in difficult situations when the target is occluded.en_US
dc.identifier.conferenceNational Engineering Conference [19th] 2013en_US
dc.identifier.departmentDepartment of Mathematicsen_US
dc.identifier.emailshehan117@gmail.comen_US
dc.identifier.emailcooray@math.mrt.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 93-98en_US
dc.identifier.placeMoratuwaen_US
dc.identifier.urihttp://dl.lib.mrt.ac.lk/handle/123/11065
dc.identifier.year2013en_US
dc.language.isoenen_US
dc.source.urihttp://www.eru.mrt.ac.lk/web/docs/symposium/2013/eru201316.pdfen_US
dc.titleMean shift kalman object tracking for video surveillanceen_US
dc.typeConference-Full-texten_US

Files