Federated learning for improved automatic modulation classification: data heterogeneity and low SNR accuracy

dc.contributor.authorSiriwardana, GK
dc.contributor.authorJayawardhana, HD
dc.contributor.authorBandara, WU
dc.contributor.authorAtapattu, S
dc.contributor.authorHerath, VR
dc.contributor.editorAbeysooriya, R
dc.contributor.editorAdikariwattage, V
dc.contributor.editorHemachandra, K
dc.date.accessioned2024-03-11T03:14:49Z
dc.date.available2024-03-11T03:14:49Z
dc.date.issued2023-12-09
dc.description.abstractThis research introduces novel federated learning (FL)-based methods, namely FedAvgAMC, FedPerAMC, and FedAvgAMCAug, to enhance automatic modulation classification (AMC) in communication systems. By addressing data heterogeneity, incorporating higher-order modulation schemes, and exploring personalized models for clients, these methods overcome challenges associated with centralized learning and data leakage. Simulation results demonstrate significant improvements in accuracy, particularly at low and moderate signal-to-noise ratios (SNRs). FedAvgAMCAug, a privacy-preserving method, achieves superior performance, outperforming CentAMC by 18% in accuracy at an SNR of 5 dB and consistently surpassing existing learning techniques across all clients and SNR values. This research highlights the potential of federated learning to enhance AMC accuracy in real-world scenarios, paving the way for future optimizations and exploration of techniques to address data uncertainty for even more robust performance.en_US
dc.identifier.citationG. K. Siriwardana, H. D. Jayawardhana, W. U. Bandara, S. Atapattu and V. R. Herath, "Federated Learning for Improved Automatic Modulation Classification: Data Heterogeneity and Low SNR Accuracy," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 462-467, doi: 10.1109/MERCon60487.2023.10355464.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2023en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emaile16355@eng.pdn.ac.lken_US
dc.identifier.emaile16158@eng.pdn.ac.lken_US
dc.identifier.emailsaman.atapattu@rmit.edu.auen_US
dc.identifier.emaile16040@eng.pdn.ac.lken_US
dc.identifier.emailvijitha@eng.pdn.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 462-467en_US
dc.identifier.placeKatubeddaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2023en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/22288
dc.identifier.year2023en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/10355464en_US
dc.subjectAutomatic modulation classification (AMC)en_US
dc.subjectfederated learning (FL)en_US
dc.subjectdata heterogeneityen_US
dc.subjectdata augmentationen_US
dc.titleFederated learning for improved automatic modulation classification: data heterogeneity and low SNR accuracyen_US
dc.typeConference-Full-texten_US

Files

Collections