Application of random forest model in Google earth engine to enhance land surface temperature estimation: a machine learning approach

dc.contributor.authorKeshara, KI
dc.contributor.authorMadhurshan, R
dc.contributor.authorRajapaksha, RMNP
dc.contributor.editorGamage , JR
dc.contributor.editorNandasiri , GK
dc.contributor.editorMawathage , SA
dc.contributor.editorHerath, RP
dc.date.accessioned2025-05-29T10:12:26Z
dc.date.issued2024
dc.description.abstractLand Surface Temperature (LST) is a crucial parameter in Earth observation and environmental studies due to its significance in various fields [1]. Understanding the temporal and spatial variations in LST is essential for surface modeling processes. This knowledge is crucial for various applications, including soil moisture estimation, wildfire monitoring, and urban climate change mitigation. Consequently, satellite-derived time series of land surface temperatures (LSTs) with high spatial resolution offer valuable insights for monitoring the dynamics of the land-atmosphere interface across diverse landscapes [2]. The purpose of this research is to enhance LST mapping by using the Random Forest algorithm in relates with various spectral indices derived from Landsat 8 imagery. By integrating these indices with the Random Forest machine learning model, the research aims to improve the accuracy of LST estimation and mapping across different landscapes.
dc.identifier.conferenceERU Symposium - 2024
dc.identifier.departmentDepartment of Earth Resources Engineering
dc.identifier.doihttps://doi.org/10.31705/ERU.2024.4
dc.identifier.emaildhananjayakik.21@uom.lk
dc.identifier.emailmadhurshan1598.rav@gmail.com
dc.identifier.emailrajapaksharmnp.21@uom.lk
dc.identifier.facultyEngineering
dc.identifier.issn3051-4894
dc.identifier.pgnospp. 11-12
dc.identifier.placeSri Lanka
dc.identifier.proceedingProceedings of the ERU Symposium 2024
dc.identifier.urihttps://dl.lib.uom.lk/handle/123/23577
dc.language.isoen
dc.publisherEngineering Research Unit
dc.subjectLST
dc.subjectLandsat8
dc.subjectNDBI
dc.subjectTVI
dc.subjectMNDWI
dc.titleApplication of random forest model in Google earth engine to enhance land surface temperature estimation: a machine learning approach
dc.typeConference-Extended-Abstract

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4.Application of Random Forest Model in Google Earth Engine to Enhance Land Surface Temperature Estimation.pdf
Size:
443.16 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections