VUEBLOX: a semi-supervised hybrid deep learning framework for occlusion-aware and interpretable crowd anomaly detection

dc.contributor.authorVaratharajan, V
dc.contributor.authorJawwadh, S
dc.contributor.editorGunawardena, S
dc.date.accessioned2025-11-21T04:34:42Z
dc.date.issued2025
dc.description.abstractCrowd tracking using computer vision technologies enhances public safety, but detecting crowd anomalies remains challenging due to issues like occlusion and interpretability models’ low accuracy [1]. Also, those are irregularly happening constitute a small percentage, so the datasets have lots of missing labeled outliers. This study address these gaps by proposing a semi-supervised hybrid architecture with dedicated modules for occlusion and interpretability.
dc.identifier.conferenceApplied Data Science & Artificial Intelligence (ADScAI) Symposium 2025
dc.identifier.departmentDepartment of Computer Science & Engineering
dc.identifier.doihttps://doi.org/10.31705/ADScAI.2025.32
dc.identifier.emailvaichaly.20210459@iit.ac.lk
dc.identifier.emailsaadh.j@iit.ac.lk
dc.identifier.facultyEngineering
dc.identifier.placeMoratuwa, Sri Lanka
dc.identifier.proceedingProceedings of Applied Data Science & Artificial Intelligence Symposium 2025
dc.identifier.urihttps://dl.lib.uom.lk/handle/123/24424
dc.language.isoen
dc.publisherDepartment of Computer Science and Engineering
dc.subjectCrowd anomaly detection
dc.subjectExplainable AI
dc.subjectOcclusion handling
dc.subjectSemi-supervised learning
dc.subjectTemporal-spatial attention
dc.titleVUEBLOX: a semi-supervised hybrid deep learning framework for occlusion-aware and interpretable crowd anomaly detection
dc.typeConference-Extended-Abstract

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper 32 - ADScAI 2025.pdf
Size:
107.03 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections